

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1759

Genome Sequencing and Classifier

1,2
Puneet Gupta, Gaurav Melkani, Dr Sunil Maggu, Dr Anu Rathee

Maharaja Agrasen Institute of Technology Delhi

(Assistant professor, Department of Computer Science and Engineering): Maharaja Agrasen Institute of

Technology Delhi

Submitted: 01-06-2021 Revised: 14-06-2021 Accepted: 16-06-2021

ABSTRACT: This research paper is about to

perform sequence and classification on DNA

Sequence using machine learning.

Genomics is a branch of molecular biology focused

on studying all aspects of a genome, or the complete

set of genes within a particular organism. Today,

machine learning is playing an integral role in the

evolution of the field of genomics. The ability to

sequence DNA provides researchers with the ability

to “read” the genetic blueprint that directs all the

activities of a living organism. In the ML categories

of classification, clustering and regression have been

proven useful for solving biological research

questions such as gene signatures, functional

genomics, gene-phenotype associations and gene

interactions.

KEYWORDS: DNA Sequence,Python K-

Mer,Classification,Count vectorizer, NLP, Naive

Bayes,Machine Learning,Bag of Words.

I. INTRODUCTION
In this paper we have done DNA

sequencing and classification on Human,

Chimpanzee and dogs genes respectively.. To

provide context, the central dogma of biology is

summarized as the pathway from DNA to RNA to

Protein. DNA is composed of base pairs, based on 4

basic units (A, C, G and T) called nucleotides: A

pairs with T, and C pairs with G. DNA is organized

into chromosomes and humans have a total of 23

pairs.

With the massive generation of data, the era known

as „big‟ data, deep learning (DL) approaches

appeared as a discipline of ML that are considered

to be more efficient and effective when we deal with

big amounts of data. DL has also proven to provide

models with higher accuracy that are efficient at

discovering patterns in high-dimensional data

making them applicable to a variety of domains.

The complexity and escalation of the NGS

data pose problems; sharing, storing, archiving, and

analyzing data as large as 1 TB per sample is an

issue. The current sequencing platforms are capable

of producing 13 quadrillion DNA bases limit of

NGS technologies is evaluated to be 13 quadrillion

DNA bases per year and is hard to manage.

However, this limitation is overcome by

the development of many machine learning

algorithms, NGS software, and big data analytics.

Big data analytics, a new trend in research, promises

the development of significant approaches for the

analysis of complex NGS data using customized

next-generation sequencing software.

Both machine learning and data science

(like deep learning) are emerging as the latest and

the most efficient approaches to speed up the

sequencing and analysis process. The development

of multiple algorithms like indexes, hash tables, and

spaced-seed has led to the optimization of the NGS

data analysis.

 [1].Treating DNA as a language known as

k-mers. In bioinformatics, k-mers are subsequences

of length contained within a biological sequence.

Primarily used within the context of computational

genomics and sequence analysis, in which k-mers

are composed of nucleotides (i.e. A, T, G, and C), k-

mers are capitalized upon to assemble DNA

sequences. A method of visualizing k-mers, the k-

mer spectrum, shows the multiplicity of each k-mer

in a sequence versus the number of k-mers with that

multiplicity. The frequency of k-mer usage is

affected by numerous forces, working at multiple

levels, which are often in conflict. It is important to

note that k-mers for higher values of k are affected

by the forces affecting lower values of k as well. For

example, if the 1-mer A does not occur in a

sequence, none of the 2-mers containing A (AA,

AT, AG, and AC) will occur either, thereby linking

the effects of the different forces.

[2]. Natural language processing is a

subfield of linguistics, computer science,

information engineering, and artificial intelligence

concerned with the interactions between computers

and human languages, in particular how to program

computers to process and analyze large amounts of

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1760

natural language data.The internal combustion

engine is a device which basically converts the heat

energy into mechanical energy. The cam has been

an integral part of the IC engine from its invention.

As with the demands for better fuel economy, more

power, and less pollution, motor engineers around

the world are pursuing a radical “camless” design

that promises to deliver the internal combustion

engine‟s biggest efficiency improvement in years.

The article looks at the working of the

electrohydraulic camless engine, its general features

and benefits over conventional engines. In this

article we focused on a basic overview of camless

engine along with its design principle, components

and its merits over other conventional engines.

[3]. CountVectorizer is a great tool

provided by the scikit-learn library in Python. It is

used to transform a given text into a vector on the

basis of the frequency (count) of each word that

occurs in the entire text. This is helpful when we

have multiple such texts, and we wish to convert

each word in each text into vectors. CountVectorizer

creates a matrix in which each unique word is

represented by a column of the matrix, and each text

sample from the document is a row in the matrix.

The value of each cell is nothing but the count of the

word in that particular text sample.

Inside CountVectorizer, these words are

not stored as strings. We will be creating vectors

that have a dimensionality equal to the size of our

vocabulary, and if the text data features that

vocabulary word, we will put a one in that

dimension. Every time we encounter that word

again, we will increase the count, leaving 0s

everywhere we did not find the word even once.

[4]. We need to now convert the lists of k-mers for

each gene into string sentences of words that can be

used to create the Bag of Words model.

[5]. Creating the Bag of Words model using

CountVectorizer(). This is equivalent to k-mer

counting. Converted our k-mer words into uniform

length numerical vectors that represent counts for

every k-mer in the vocabulary. So, for humans we

have 4380 genes converted into uniform length

feature vectors of 4-gram k-mer (length 6) counts.

For chimp and dog, we have the same number of

features with 1682 and 820 genes respectively.

II. LIETERATURE REVIEW
Algorithms that have been used for protein

sequence classification can be classified roughly

into several types, depending on whether they are

based on the K-Nearest Neighbor (K-NN) approach,

the Hidden Markov Model (HMM) approach, or the

Support Vector Machine (SVM) approach or any

other classification algorithms. In the context of

protein sequence classification, Markov models

(MMs) are used to capture dependencies between

the neighboring sequence elements. MMs are among

the most widely used generative models of sequence

data [4]. In a kth order MM, the sequence elements

satisfy the Markov property: each element is

independent of the rest given the K preceding

elements. Begleiter et al.[2] have examined methods

for prediction using variable order MMs, including

probabilistic suffix trees, which can be viewed as

variants of abstraction wherein the abstractions are

constrained to share suffixes.

Due to its simplicity, the K-NN approach

to classification (Fix et al., 1949) [8] has been

popular in the biological domain (Deshpande et al.,

2002; Lu et al., 2003) [4, 11]. Given a database of

pre-classified sequences, a new sequence can be

classified by finding k sequences in the database. It

is then assigned to the class that the majority of

these k sequences belong to. The key step in

building a K-NN classifier is to determine how

similar two sequences are, and the measure of

similarity is usually determined by computing

global or local alignment scores. For this purpose,

the most popular algorithm used is the Smith-

Waterman dynamic programming algorithm (Smith

et al., 1981) [15]. This algorithm is relatively

accurate, but it is not very computationally efficient.

Heuristic algorithms such as BLAST (Altschul et

al., 1990) [1] and FASTA (Pearson, 1990) [13] have

therefore been developed to trade reduced accuracy

for improved efficiency.

The HMM-based approaches (Rabiner,

1989) [14] to protein sequence classification have

been shown to be effective in detecting for

conserved residue patterns in a set of protein

sequences (Eddy et al., 1995; Hughey et al., 1996 ;)

[6], [9]. A typical HMM consists of a chain of

match, insert, and delete states in a Markov chain,

with all transitions between states and all residue

costs in the insert and match states trained to

specific probabilities. When the HMM is trained on

a set of sequences that are members of a given

protein family, the model parameters are learned via

an expectation-maximization approach and a form

of dynamic programming is used to detect for

similarity. The resulting HMM can identify the

positions of residues that can describe conserved

primary structures of a family and it can then be

used to discriminate between family and non-family

members.

The SVM-based approaches (Cristianini et

al., 2002; Vapnik, 1998) [3] to classification use

both positive and negative examples when training a

classifier. They perform protein sequence

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1761

classification by mapping the input training

sequences into a high dimensional feature space and

try to locate in the feature space a plane that

maintains a maximum margin from any point in the

training set. Then the class label of the unclassified

sequence is predicted by mapping it into the feature

space and deciding on which side of the separating

plane, the given sequence lies. The SVM-pairwise

method (Schölkopf et al., 2004) [16] also requires

that a given set of protein sequences be converted

into fixed-length vectors first. SVM is then trained

from the vectorized protein sequences. A list of

pairwise sequence similarity scores are computed by

using the dynamic programming algorithm.

The K-NN-, HMM-, and SVM-based

algorithms are most commonly used for protein

sequence classification. In K-NN-based approach,

the number of k needs to be determined in advance.

Also, pairwise alignment is computationally

inefficient and the reliability of similarity detection

falls rapidly whenever the pairwise sequence

identity drops below 30%. In HMM based

algorithms, many parameters are needed to be

estimated accurately and this requires a large

amount of training data which may not always be

readily available. For SVM based approaches, all

input sequences need to be aligned beforehand in

order to transform them into fixed-length vectors in

the feature space and the alignment process can be

difficult and time-consuming.

III. PROBLEM OBJECTIVE AND

METHODOLOGY
How can we verify and Identify particular

class of the Gene ?

In this Research our objective is to build a

classification model that is trained on the human

DNA sequence and can predict a gene family based

on the DNA sequence of the coding sequence. To

test the model, we will use the DNA sequence of

humans, dogs, and chimpanzees and compare the

accuracies perform sequencing and classification.

Sequencing DNA means determining the order of

the four chemical building blocks - called "bases" -

that make up the DNA molecule. The sequence tells

scientists the kind of genetic information that is

carried in a particular DNA segment. Eventually we

will do classification. In classification, the model

produced assign input to one of the classes

depending on the decision rules. As a data-driven

science, genomics extensively utilizes machine

learning to capture dependencies in data and infer

new biological hypotheses. Nonetheless, the ability

to extract new insights from the exponentially

increasing volume of genomics data requires more

powerful machine learning models. By efficiently

leveraging large data sets, deep learning has

reconstructed fields such as computer vision and

The double-helix is the correct chemical

representation of DNA. But DNA is special. It‟s a

nucleotide made of four types of nitrogen bases:

Adenine (A), Thymine (T), Guanine (G), and

Cytosine. We always call them A, C, Gand T.

DNA sequencing is the process of determining the

nucleic acid sequence – the order of nucleotides in

DNA. It includes any method or technology that is

used to determine the order of the four bases:

adenine, guanine, cytosine, and thymine.

Sequencing DNA means determining the order of

the four chemical building blocks - called "bases" -

that make up the DNA molecule.

The sequence tells scientists the kind of genetic

information that is carried in a particular DNA

segment.

For example, scientists can use sequence

information to determine which stretches of DNA

contain genes and which stretches carry regulatory

instructions, turning genes on or off.

 method of preference for many genomics modeling

tasks including predicting the influence of genetic

on gene regulatory mechanisms such as DNA

receptiveness and splicing.

 DNA and protein sequences can be seen as

the language of life. The language encodes

instructions as well as functions for the molecules

that are found in all life forms. The sequence

language resemblance continues with the genome as

the book, subsequences (genes and gene families)

are sentences and chapters, k-mers and peptides are

words, and nucleotide bases and amino acids are the

alphabets. Since the relationship seems so likely, it

stands to reason that the natural language

processing(NLP) should also implement the natural

language of DNA and protein sequences. The

method we use here is manageable and easy. We

first take the long biological sequence and break it

down into k-mer length overlapping “words”. For

example, if we use “words” of length 6 (hexamers),

“ATGCATGCA” becomes: „ATGCAT‟,

„TGCATG‟, „GCATGC‟, „CATGCA‟. Hence our

example sequence is broken down into 4 hexamer

words.

In genomics, we refer to these types of

manipulations as “k-mer counting”, or counting the

occurrences of each possible k-mer sequence and

Python natural language processing tools make it

easy.

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1762

SOURCE CODE FOR DNA SEQUENCING AND CLASSIFICATION

def Kmers_funct(seq, size):

 return [seq[x:x+size].lower() for x in range(len(seq) - size + 1)]

#So let‟s try it out with a simple sequence:

mySeq = 'GTGCCCAGGTTCAGTGAGTGACACAGGCAG'

Kmers_funct(mySeq, size=7)

words = Kmers_funct(mySeq, size=6)

joined_sentence = ' '.join(words)

joined_sentence

mySeq1 = 'TCTCACACATGTGCCAATCACTGTCACCC'

mySeq2 = 'GTGCCCAGGTTCAGTGAGTGACACAGGCAG'

sentence1 = ' '.join(Kmers_funct(mySeq1, size=6))

sentence2 = ' '.join(Kmers_funct(mySeq2, size=6))

linkcode

#Creating the Bag of Words model:

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer()

X = cv.fit_transform([joined_sentence, sentence1, sentence2]).toarray()

X import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import os

import matplotlib.pyplot as plt

%matplotlib inline

for dirname, _, filenames in os.walk('/kaggle/input'):

 for filename in filenames:

 print(os.path.join(dirname, filename))

human_dna = pd.read_table('../input/dna-sequence-dataset/human.txt')

//LOAD HUMAN DATA

human_dna.head()

human_dna['class'].value_counts().sort_index().plot.bar()

plt.title("Class distribution of Human DNA")

//LOAD CHIMP DATA

chimp_dna = pd.read_table('../input/dna-sequence-dataset/chimpanzee.txt')

chimp_dna.head()

chimp_dna['class'].value_counts().sort_index().plot.bar()

plt.title("Class distribution of Chimpanzee DNA")

//LOAD DOG DATA

dog_dna = pd.read_table('../input/dna-sequence-dataset/dog.txt')

dog_dna.head()

dog_dna['class'].value_counts().sort_index().plot.bar()

plt.title("Class distribution of Dog DNA")

def Kmers_funct(seq, size=6):

 return [seq[x:x+size].lower() for x in range(len(seq) - size + 1)]

#convert our training data sequences into short overlapping k-mers of length 6.

#Lets do that for each species of data we have using our Kmers_funct function.

human_dna['words'] = human_dna.apply(lambda x: Kmers_funct(x['sequence']), axis=1)

human_dna = human_dna.drop('sequence', axis=1)

chimp_dna['words'] = chimp_dna.apply(lambda x: Kmers_funct(x['sequence']), axis=1)

chimp_dna = chimp_dna.drop('sequence', axis=1)

dog_dna['words'] = dog_dna.apply(lambda x: Kmers_funct(x['sequence']), axis=1)

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1763

dog_dna = dog_dna.drop('sequence', axis=1)

human_dna.head()

human_texts = list(human_dna['words'])

for item in range(len(human_texts)):

 human_texts[item] = ' '.join(human_texts[item])

#separate labels

y_human = human_dna.iloc[:, 0].values # y_human for human_dna

chimp_texts = list(chimp_dna['words'])

for item in range(len(chimp_texts)):

 chimp_texts[item] = ' '.join(chimp_texts[item])

#separate labels

y_chim = chimp_dna.iloc[:, 0].values # y_chim for chimp_dna

dog_texts = list(dog_dna['words'])

for item in range(len(dog_texts)):

 dog_texts[item] = ' '.join(dog_texts[item])

#separate labels

y_dog = dog_dna.iloc[:, 0].values # y_dog for dog_dna

linkcode

y_human

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(ngram_range=(4,4)) #The n-gram size of 4 is previously determined by testing

X = cv.fit_transform(human_texts)

X_chimp = cv.transform(chimp_texts)

X_dog = cv.transform(dog_texts)

linkcode

print(X.shape)

print(X_chimp.shape)

print(X_dog.shape)

Splitting the human dataset into the training set and test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X,

 y_human,

 test_size = 0.20,

 random_state=42)

from sklearn.naive_bayes import MultinomialNB

classifier = MultinomialNB(alpha=0.1)

classifier.fit(X_train, y_train)

y_pred = classifier.predict(X_test)

from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score

print("Confusion matrix for predictions on human test DNA sequence\n")

print(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted')))

def get_metrics(y_test, y_predicted):

 accuracy = accuracy_score(y_test, y_predicted)

 precision = precision_score(y_test, y_predicted, average='weighted')

 recall = recall_score(y_test, y_predicted, average='weighted')

 f1 = f1_score(y_test, y_predicted, average='weighted')

 return accuracy, precision, recall, f1

accuracy, precision, recall, f1 = get_metrics(y_test, y_pred)

print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, precision, recall, f1))

Predicting the chimp, dog sequences

y_pred_chimp = classifier.predict(X_chimp)

linkcode

performance on chimpanzee genes

print("Confusion matrix for predictions on Chimpanzee test DNA sequence\n")

print(pd.crosstab(pd.Series(y_chim, name='Actual'), pd.Series(y_pred_chimp, name='Predicted')))

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1764

accuracy, precision, recall, f1 = get_metrics(y_chim, y_pred_chimp)

print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, precision, recall, f1))

y_pred_dog = classifier.predict(X_dog)

linkcode

performance on dog genes

print("Confusion matrix for predictions on Dog test DNA sequence\n")

print(pd.crosstab(pd.Series(y_dog, name='Actual'), pd.Series(y_pred_dog, name='Predicted')))

accuracy, precision, recall, f1 = get_metrics(y_dog, y_pred_dog)

print("accuracy = %.3f \nprecision = %.3f \nrecall = %.3f \nf1 = %.3f" % (accuracy, precision, recall, f1))

IV. RESULT
True positive and true negatives are the

observations that are correctly predicted and

therefore shown in green. We want to minimize

false positives and false negatives so they are shown

in red color. These terms are a bit confusing. So

let‟s take each term one by one and understand it

fully.

True Positives (TP) - These are the correctly

predicted positive values which means that the value

of actual class is yes and the value of predicted

True Negatives (TN) - These are the correctly

predicted negative values which means that the

value of actual class is no and value of predicted

class is also no. E.g., if actual class says this

passenger did not survive and predicted class tells

you the same thing.

False positives and false negatives, these values

occur when your actual class contradicts with the

predicted class.

False Positives (FP) – When actual class is no and

predicted class is yes. E.g. if actual class says this

passenger did not survive but predicted class tells

you that this passenger will survive.

False Negatives (FN) – When actual class is yes but

predicted class in no. E.g. if actual class value

indicates that this passenger survived and predicted

class tells you that passenger will die.

Once you understand these four parameters then we

can calculate Accuracy, Precision, Recall and F1

score.

Accuracy = TP+TN/TP+FP+FN+TN

Precision - Precision is the ratio of correctly

predicted positive observations to the total predicted

positive observations. The question that this metric

answer is of all passengers that labeled as survived,

how many actually survived? High precision relates

to the low false positive rate. We have got 0.788

precision which is pretty good.

Precision = TP/TP+FP

Recall (Sensitivity) - Recall is the ratio of correctly

predicted positive observations to the all

observations in actual class - yes. The question

recall answers is: Of all the passengers that truly

survived, how many did we label? We have got

recall of 0.631 which is good for this model as it‟s

above 0.5.

Recall = TP/TP+FN

F1 score - F1 Score is the weighted average of

Precision and Recall. Therefore, this score takes

both false positives and false negatives into account.

Intuitively it is not as easy to understand as

accuracy, but F1 is usually more useful than

accuracy, especially if you have an uneven class

distribution. Accuracy works best if false positives

and false negatives have similar cost. If the cost of

false positives and false negatives are very different,

it‟s better to look at both Precision and Recall. In

our case, F1 score is 0.701.

F1 Score = 2*(Recall * Precision) / (Recall +

Precision).

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1765

Accuracy is the most intuitive performance measure

and it is simply a ratio of correctly predicted

observation to the total observations. One may think

that, if we have high accuracy then our model is

best. Yes, accuracy is a great measure but only when

you have symmetric datasets where values of false

positive and false negatives are almost same.

Therefore, you have to look at other parameters to

evaluate the performance of your model. For our

model, we have got 0.803 which means our model is

approx. 80% accurate.

CLASS DISTRIBUTION OF HUMAN DNA

CLASS DISTRIBUTION OF CHIMPANZEE DNA

CLASS DISTRIBUTION OF DOG DNA

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1766

//CONFUSION MATRIX FOR HUMAN CLASS

Output

Confusion matrix

Predicted 0 1 2 3 4 5 6

Actual

0 232 0 0 0 0 0 2

1 0 184 0 0 0 0 1

2 0 0 144 0 0 0 0

3 0 0 0 227 0 0 1

4 2 0 0 0 254 0 5

5 0 0 0 0 0 109 0

6 0 0 0 0 0 0 521

accuracy = 0.993

precision = 0.994

recall = 0.993

f1 = 0.993

//CONFUSION MATRIX FOR CHIMP CLASS

Output

Confusion matrix

Predicted 0 1 2 3 4 5 6

Actual

0 99 0 0 0 1 0 2

1 0 104 0 0 0 0 2

2 0 0 78 0 0 0 0

3 0 0 0 124 0 0 1

4 1 0 0 0 143 0 5

5 0 0 0 0 0 51 0

6 1 0 0 1 0 0 263

accuracy = 0.984

precision = 0.984

recall = 0.984

f1 = 0.984

//CONFUSION MATRIX FOR DOG CLASS

Output

Confusion matrix

Predicted 0 1 2 3 4 5 6

Actual

0 127 0 0 0 1 0 4

1 0 63 0 0 1 0 11

2 0 0 49 0 1 0 14

3 1 0 0 81 2 0 11

4 4 0 0 1 126 0 4

5 4 0 0 0 1 53 2

6 0 0 0 1 0 0 260

accuracy = 0.993

precision = 0.994

recall = 0.993

f1 = 0.993

International journal of advances in engineering and management (IJAEM)
Volume 3, issue 6 June 2021, pp: 1759-1767 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-030617591767 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1767

V. CONCLUSION
The combination of artificial intelligence

technologies such as machine learning and

genomics can potentially solve several significant

problems we are facing today in medical field.

 With powerful machine learning algorithms,

genomics researchers will be able to deliver better

results faster, at lower cost – making their

outcomes available to more people.

SOME OF THE ADVANAGES FROM THE

ABOVE RESULTS

Researchers are using machine learning to

identify patterns within high volume genetic data

sets. These patterns are then translated to computer

models which may help predict an individual‟s

probability of developing certain diseases or help

inform the design of potential therapies.

REFERENCES
[1]. S.F. Altschul, , W. Gish, and W. Miller, “A

basic local alignment search tool”, J. Mol.

Biol. 215, 403–410, 1990.

[2]. R. Begleiter, R. El-Yaniv, and G. Yona, “On

prediction using variable order markov

models”, Journal of Artificial Intelligence

Res., vol. 22, pp. 385–421, 2004.

[3]. N. Cristianini, and J. Shawe-Tahlor, “An

Introduction to Support Vector Machines

and Other Kernel-Based Learning Methods”,

Cambridge University Press, New York,

2002..

[4]. M. Deshpande, and G. Karypis, “Evaluation

of techniques for classifying biological

sequences”, PAKDD 2002, 417–431, 2002.

[5]. R. Durbin, S. R. Eddy, A. Krogh, and G.

Mitchison, “Biological sequence analysis:

Probabilistic Models of Proteins and Nucleic

Acids”, Cambridge University Press., 2004.

[6]. S.R Eddy, “Multiple alignment using hidden

Markov models”, ISMB 114–120, 1995.

[7]. C. Ferrer-Costa, M. Orozco, X. de la Cruz,

“Sequence-based prediction of pathological

mutations”.

